At seeming safe concentrations, synergistic effects of PM2.5 and formaldehyde co-exposure induces Alzheimer-like changes in mouse brain
نویسندگان
چکیده
Alzheimer's disease (AD) is a serious, common, global disease, yet its etiology and pathogenesis are incompletely understood. Air pollution is a multi-pollutants co-exposure system, which may affect brain. The indoor environment is where exposure to both air particulate matter (<2.5 μm in diameter) (PM2.5) and formaldehyde (FA) can occur simultaneously. Whether exposure to such a multi-pollutant (PM2.5 plus FA) mixture contributes to the development of AD, and whether there is a difference between exposure to PM2.5 or FA alone needs to be investigated. To determine the objective, C57BL/6J mice were exposed daily to PM2.5 (0.193 mg/Kg/day), FA (0.155 mg/Kg/day) or multi-pullutants (0.193 mg/Kg/day PM2.5 plus 0.155 mg/Kg/day FA) for one week. AD-like changes and upstream events were investigated after exposure. The results showed that exposure to PM2.5 or FA alone in this study had little or no adverse effects on the mouse brain. However, some AD-like pathologies were detected after multi-pullutants co-exposure. This work suggested PM2.5 plus FA co-exposure has more potential to induce AD-like pathologies than exposure alone. Oxidative stress and inflammation may be involved into the toxic mechanisms. Synergistic effects of co-exposure may induce the hygienic or safety standards of each pollutant not safe.
منابع مشابه
P-59: Investigation of Simultaneous Exposure to Noise and Formaldehyde Vapor on Mouse Reproductive Function
Background: Formaldehyde (FA) is a member of aldehyde family with a simplest organic molecule, used in various industries. Since there is simultaneous exposure of formaldehyde and noise for workers in most of the workplaces and that noise can reinforce the harmful effects of some chemical pollutants. This study aimed to investigate the effects of simultaneous formaldehyde and noise exposure on ...
متن کاملP-61: Inhibitory Effect of Simultaneous Exposure to Formaldehyde Vapour and Noise on Mouse Sperm Kinematic Parameters and Sexual Hormones
Background: This study aimed to investigate the inhibitory effects of simultaneous formaldehyde (FA) and noise exposure on the sperm kinematic parameters sexual hormones in male mice. Materials and Methods: Forty eight NMRI adult male mice were randomly assigned to control group and experimental groups which were exposed to formaldehyde vapour (10 ppm) (F), noise (100 dB) (N), and simultaneous ...
متن کاملP-80: Influence of Formaldehyde Vapor on Male Reproductive Function in Mice
Background: Formaldehyde (FA, H2CO), a member of the aldehyde family and one of the simplest organic molecules, is a flammable, pungent, irritating and colorless gas. This study aimed to investigate the effect of formaldehyde (FA) vapor on sperm parameters and testicular tissue concern about the duration of analysis and the amount of the formaldehyde vapor concentrations. Materials and Methods:...
متن کاملP-122: Effects of Cobalt Chloride and Chromium Chloride on Development of Mouse Testes
Background: Cobalt (Co) is an essential trace element for mammals required for the synthesis of vitamin B12. It is not a cumulative toxin but chronic exposure induces negative effects on the organism. It was proven that cobalt passes via placenta appearing in the fetal blood and amniotic fluid and it is shown to possess an embryotoxic effect. Also, chromium (Cr) is recognized as a trace element...
متن کاملA Pilot Study to Assess Effects of Long-Term Inhalation of Airborne Particulate Matter on Early Alzheimer-Like Changes in the Mouse Brain
Exposure to air pollutants, including particulate matter, results in activation of the brain inflammatory response and Alzheimer disease (AD)-like pathology in dogs and humans. However, the length of time required for inhalation of ambient particulate matter to influence brain inflammation and AD pathology is less clear. Here, we studied the effect of 3 and 9 months of air particulate matter (<...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017